Opposing Roles for Endogenous BDNF and NT-3 in Regulating Cortical Dendritic Growth

نویسندگان

  • A.Kimberley McAllister
  • Lawrence C. Katz
  • Donald C. Lo
چکیده

Neurons within each layer of cerebral cortex express multiple members of the neurotrophin family and their corresponding receptors. This multiplicity could provide functional redundancy; alternatively, different neurotrophins may direct distinct aspects of cortical neuronal growth and differentiation. By neutralizing endogenous neurotrophins in organotypic slices of developing cortex with Trk receptor bodies (Trk-IgGs), we found that BDNF and NT-3 oppose one another in regulating the dendritic growth of pyramidal neurons. In layer 4, both endogenous and exogenous NT-3 inhibited the dendritic growth stimulated by BDNF. In contrast, in layer 6 both endogenous and exogenous BDNF inhibited dendritic growth stimulated by NT-3. These antagonistic actions of endogenous BDNF and NT-3 provide a mechanism by which dendritic growth and retraction can be dynamically regulated during cortical development, and suggest that the multiple neurotrophins expressed in developing cortex represent distinct components of an extracellular signaling system for regulating dendritic growth.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Action of brain-derived neurotrophic factor on function and morphology of visual cortical neurons

Brain-derived neurotrophic factor (BDNF) is known to play a role in experience-dependent plasticity of the developing visual cortex. For example, BDNF acutely enhances long-term potentiation and blocks long-term depression in the visual cortex of young rats. Such acute actions of BDNF suggested to be mediated mainly through presynaptic mechanisms. A chronic application of BDNF to the visual cor...

متن کامل

Action of brain-derived neurotrophic factor on function and morphology of visual cortical neurons

Brain-derived neurotrophic factor (BDNF) is known to play a role in experience-dependent plasticity of the developing visual cortex. For example, BDNF acutely enhances long-term potentiation and blocks long-term depression in the visual cortex of young rats. Such acute actions of BDNF suggested to be mediated mainly through presynaptic mechanisms. A chronic application of BDNF to the visual cor...

متن کامل

Neurotrophins regulate dendritic growth in developing visual cortex

Although dendritic growth and differentiation are critical for the proper development and function of neocortex, the molecular signals that regulate these processes are largely unknown. The potential role of neurotrophins was tested by treating slices of developing visual cortex with NGF, BDNF, NT-3, or NT-4 and by subsequently visualizing the dendrites of pyramidal neurons using particle-media...

متن کامل

Insulin-like growth factor I stimulates dendritic growth in primary somatosensory cortex.

The temporal and spatial distributions of several growth factors suggest roles in the regulation of neuronal differentiation in the neocortex. Among such growth factors, the insulin-like growth factors (IGF-I and -II) are of particular interest because they are available to neurons from multiple sources under independent control. IGF-I is produced by many neurons throughout the brain and also b...

متن کامل

Endogenous brain-derived neurotrophic factor and neurotrophin-3 antagonistically regulate survival of axotomized corticospinal neurons in vivo.

Neuronal growth factors regulate the survival of neurons by their survival and death-promoting activity on distinct populations of neurons. The neurotrophins nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), and neurotrophin-3 (NT-3) promote neuronal survival via tyrosine kinase (Trk) receptors, whereas NGF and BDNF can also induce apoptosis in developing neurons through p75(...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Neuron

دوره 18  شماره 

صفحات  -

تاریخ انتشار 1997